86 research outputs found

    Three-dimensional waves generated at Lindblad resonances in thermally stratified disks

    Get PDF
    We analyze the linear, 3D response to tidal forcing of a disk that is thin and thermally stratified in the direction normal to the disk plane. We model the vertical disk structure locally as a polytrope which represents a disk of high optical depth. We solve the 3D gas-dynamic equations semi-analytically in the neighborhood of a Lindblad resonance. These solutions match asymptotically on to those valid away from resonances and provide solutions valid at all radii. We obtain the following results. 1) A variety of waves are launched at resonance. However, the f mode carries more than 95% of the torque exerted at the resonance. 2) These 3D waves collectively transport exactly the amount of angular momentum predicted by the 2D torque formula. 3) Near resonance, the f mode occupies the full vertical extent of the disk. Away from resonance, the f mode becomes confined near the surface of the disk, and, in the absence of other dissipation mechanisms, damps via shocks. The radial length scale for this process is roughly r_L/m (for resonant radius r_L and azimuthal wavenumber m), independent of the disk thickness H. This wave channeling process is due to the variations of physical quantities in r and is not due to wave refraction. 4) However, the inwardly propagating f mode launched from an m=2 inner Lindblad resonance experiences relatively minor channeling. We conclude that for binary stars, tidally generated waves in highly optically thick circumbinary disks are subject to strong nonlinear damping by the channeling mechanism, while those in circumstellar accretion disks are subject to weaker nonlinear effects. We also apply our results to waves excited by young planets for which m is approximately r/H and conclude that the waves are damped on the scale of a few H.Comment: 15 pages, 3 figures, 2 colour plates, to be published in the Astrophysical Journa

    Tidal dissipation in rotating fluid bodies: a simplified model

    Full text link
    We study the tidal forcing, propagation and dissipation of linear inertial waves in a rotating fluid body. The intentionally simplified model involves a perfectly rigid core surrounded by a deep ocean consisting of a homogeneous incompressible fluid. Centrifugal effects are neglected, but the Coriolis force is considered in full, and dissipation occurs through viscous or frictional forces. The dissipation rate exhibits a complicated dependence on the tidal frequency and generally increases with the size of the core. In certain intervals of frequency, efficient dissipation is found to occur even for very small values of the coefficient of viscosity or friction. We discuss the results with reference to wave attractors, critical latitudes and other features of the propagation of inertial waves within the fluid, and comment on their relevance for tidal dissipation in planets and stars.Comment: 14 pages, 13 figures, to be published in MNRA

    On internal wave breaking and tidal dissipation near the centre of a solar-type star

    Full text link
    We study the fate of internal gravity waves, which are excited by tidal forcing by a short-period planet at the interface of convection and radiation zones, approaching the centre of a solar-type star. We study at what amplitude these wave are subject to instabilities. These instabilities lead to wave breaking whenever the amplitude exceeds a critical value. Below this value, the wave reflects perfectly from the centre of the star. Wave breaking results in spinning up the central regions of the star, and the formation of a critical layer, which acts as an absorbing barrier for ingoing waves. As these waves are absorbed, the star is spun up from the inside out. This results in an important amplitude dependence of the tidal quality factor Q'. If the tidal forcing amplitude exceeds the value required for wave breaking, efficient dissipation results over a continuous range of tidal frequencies, leading to Q' \approx 10^5 (P/1day)^(8/3), for the current Sun. This varies by less than a factor of 5 throughout the range of G and K type main sequence stars, for a given orbit. We predict fewer giant planets with orbital periods of less than about 2 days around such stars, if they cause breaking at the centre, due to the efficiency of this process. This mechanism would, however, be ineffective in stars with a convective core, such as WASP-18, WASP-12 and OGLE-TR-56, perhaps partly explaining the survival of their close planetary companions.Comment: 22 pages, 10 figures, accepted in MNRAS, abstract shortened (!

    Holographic entropy and brane FRW-dynamics from AdS black hole in d5 higher derivative gravity

    Full text link
    Higher derivative bulk gravity (without Riemann tensor square term) admits AdS-Schwarzschild black hole as exact solution. It is shown that induced brane geometry on such background is open, flat or closed FRW radiation dominated Universe. Higher derivative terms contributions appear in the Hawking temperature, entropy and Hubble parameter via the redefinition of 5-dimensional gravitational constant and AdS scale parameter. These higher derivative terms do not destroy the AdS-dual description of radiation represented by strongly-coupled CFT. Cardy-Verlinde formula which expresses cosmological entropy as square root from other parameters and entropies is derived in R2R^2 gravity. The corresponding cosmological entropy bounds are briefly discussed.Comment: LaTeX file, 19 page

    Tidal dissipation in rotating giant planets

    Full text link
    [Abridged] Tides may play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. We treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets. In cases of interest, the tidal forcing frequencies are comparable to the spin frequency of the planet but small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, while any radiative regions support generalized Hough waves. We present illustrative numerical calculations of the tidal dissipation rate and argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. The resulting value of Q depends in a highly erratic way on the forcing frequency, but we provide evidence that the relevant frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. In short-period extrasolar planets, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced through the excitation and damping of these waves. These dissipative mechanisms offer a promising explanation of the historical evolution and current state of the Galilean satellites as well as the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa

    Towards the entropy of gravity time-dependent models via the Cardy-Verlinde formula

    Full text link
    For models with several time-dependent components generalized entropies can be defined. This is shown for the Bianchi type IX model. We first derive the Cardy-Verlinde formula under the assumption that the first law of thermodynamics is valid. This leads to an explicit expression of the total entropy associated with this type of universes. Assuming the validity of the Cardy entropy formula, we obtain expressions for the corresponding Bekenstein, Bekenstein-Hawking and Hubble entropies. We discuss the validity of the Cardy-Verlinde formula and possible extensions of the outlined procedure to other time-dependent models.Comment: 13 page

    Tidally distorted accretion discs in binary stars

    Get PDF
    The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not take into account the vertical structure of the disc. In this paper I construct a detailed semi-analytical model of the non-linear tidal distortion of a thin, three-dimensional accretion disc by a binary companion on a circular orbit. The analysis presented here allows for vertical motion and radiative energy transport, and introduces a simple model for the turbulent magnetic stress. The m=2 inner vertical resonance has an important influence on the amplitude and phase of the tidal distortion. I show that the observed patterns find a natural explanation if the emission is associated with the tidally thickened sectors of the outer disc, which may be irradiated from the centre. According to this hypothesis, it may be possible to constrain the physical parameters of the disc through future observations.Comment: 13 pages, 3 figures, to be published in MNRA

    High resolution simulations of unstable modes in a collisionless disc

    Full text link
    We present N-body simulations of unstable spiral modes in a dynamically cool collisionless disc. We show that spiral modes grow in a thin collisionless disk in accordance with the analytical perturbation theory. We use the particle-mesh code SUPERBOX with nested grids to follow the evolution of unstable spirals that emerge from an unstable equilibrium state. We use a large number of particles (up to 40 million particles) and high-resolution spatial grids in our simulations (128^3 cells). These allow us to trace the dynamics of the unstable spiral modes until their wave amplitudes are saturated due to nonlinear effects. In general, the results of our simulations are in agreement with the analytical predictions. The growth rate and the pattern speed of the most unstable bar-mode measured in N-body simulations agree with the linear analysis. However the parameters of secondary unstable modes are in lesser agreement because of the still limited resolution of our simulations.Comment: 11 pages, 8 figures in 22 files, A&A in print: Oct. 1st 200

    On the tidal evolution of Hot Jupiters on inclined orbits

    Full text link
    Tidal friction is thought to be important in determining the long-term spin-orbit evolution of short-period extrasolar planetary systems. Using a simple model of the orbit-averaged effects of tidal friction, we study the evolution of close-in planets on inclined orbits, due to tides. We analyse the effects of the inclusion of stellar magnetic braking by performing a phase-plane analysis of a simplified system of equations, including the braking torque. The inclusion of magnetic braking is found to be important, and its neglect can result in a very different system history. We then present the results of numerical integrations of the tidal evolution equations, where we find that it is essential to consider coupled evolution of the orbital and rotational elements, including dissipation in both the star and planet, to accurately model the evolution. The main result of our integrations is that for typical Hot Jupiters, tidal friction aligns the stellar spin with the orbit on a similar time as it causes the orbit to decay. This means that if a planet is observed to be aligned, then it probably formed coplanar. This reinforces the importance of Rossiter-McLaughlin effect observations in determining the degree of spin-orbit alignment in transiting systems. We apply these results to the XO-3 system, and constrain the tidal quality factors Q' in both the star and planet in this system. Using a model in which inertial waves are excited by tidal forcing in the outer convective envelope and dissipated by turbulent viscosity, we calculate Q' for a range of F-star models, and find it to vary considerably within this class of stars. This means that assuming a single Q' applies to all stars is probably incorrect. We propose an explanation for the survival of WASP-12 b & OGLE-TR-56 b, in terms of weak dissipation in the star.Comment: 19 pages, 8 figures, accepted in MNRA

    On the origin of episodic accretion in Dwarf Novae

    Full text link
    We show that dwarf nova disks in quiescence have rather low magnetic Reynolds number, of order 10^3. Numerical simulations of magnetized accretion disks suggest that under these conditions magnetohydrodynamic turbulence and the associated angular momentum transport is sharply reduced. This could be the physical origin of episodic accretion in dwarf nova disks. If so, the standard disk instability model needs to be revised.Comment: 4 pages, 2 postscript figures, Latex, uses emulateapj.sty. To be published in Ap. J. Letter
    • …
    corecore